Functional Group Analysis by Gas Chromatography. III.¹⁾ Pyrolysis of Organic Compounds in Sulfur Vapor

Tadashi Hara and Susumu Ito

Faculty of Engineering, Doshisha University, Kamikyo-ku, Kyoto

(Received July 9, 1970)

Many papers have been published on the reactions between gaseous sulfur and organic compounds.²⁾ However, they have never been utilized in analytical chemistry. This paper deals with the pyrolysis of organic compounds in sulfur vapor, with special reference to the relationship between the pyrolytic products and functional groups.

Two grams of sulfur was placed in a quartz tube 10 mm dia.×180 mm (Fig. 1) and melted on the tube wall under helium atmosphere. Either a glass boat or a capillary tube containing 10—30 mg solid or liquid sample was inserted into the reaction

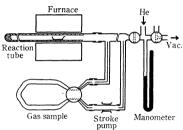


Fig. 1. Apparatus.

tube. The tube was then filled with helium, and heated at 850—880°C by means of a movable electric furnace. The time required for the reaction was about 10 min. The stroke pump was then driven and the sample was gas-chromatogramed under the following conditions: column 2 m, charged with silica gel (60—80 mesh); column temp. 100°C; and carrier gas He, 40 ml/min.

The results are shown in Table 1, and a typical pyrogram of sulfanilic acid in Fig. 2.

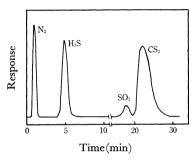


Fig. 2. Pyrogram of sulfanilic acid.

Table 1. Relationship between the type of compound and pyrolytic products

Type of compounds	Compounds	Products found	CO/CO ₂ mol ratio
R-COOH	Stearic-, Fumaric-, Cinnamic- and Adipic-acids, Potassium	CO_2	
	acetate	H_2S	
Ar-COOH	Benzoic- and Terephthalic-acids	$\overrightarrow{\mathrm{CS}_2}$	
R-CO-R'	Acetylacetone		>1
R(Ar)- CO - R'	Acetophenone, Benzophenone		<1
(Ring C)=O	Cyclohexanone		<l
Ar-CHO	Benzaldehyde	CO	>1
R(Ar)-O-Ar	Anisol, Diphenyl ether	CO_2	>1
R-COOR'	Ethyl acetate, n-Butyl acetate	H_2S	<1
Ar-COOR	Methyl benzoate, Dimethyl terephthalate	CS_2	<1
R-OH	Ethylene glycol, Diethylene glycol, Benzyl alcohol		>1
Ar-OH	Phenol, Hydroquinone, Pyrogallol		<1
$Ar-NO_2$	Nitrobenzene, 2,4-Dinitrophenylhydrazine	N_2 , H_2S , SO_2 ,	CS_2
$R(Ar)-NH_2$	Hexamethylenediamine, o-, p-Phenylenediamines	N_2 , H_2S , CS_2	
R(Ar)-CN	Adiponitrile, Phthalonitrile	N_2 , H_2S , CS_2	
Ar-SO ₃ H	Sulfanilic-, Sulfosalicylic-, m-Sulfobenzoic- and	(N_2, CO, CO_2)	,
	p-Toluenesulfonic acids	H ₂ S, SO ₂ , CS ₂	

¹⁾ Part II: S. Ito, S. Aikawa and T. Hara, Nippon Kagaku Zasshi, 91, 251 (1970).

1949, 3379; C. M. Thacker and E. Miller, *Ind. Eng. Chem.*, **36**, 182 (1944); H. O. Folkins, E. Miller and H. Henning, *ibid.*, **42**, 2202 (1950); G. W. Nabor and J. M. Smith, *ibid.*, **45**, 1272 (1953).

²⁾ For example: W. J. Thomas and R. F. Strickland-Constable, *Trans. Faraday Soc.*, **53**, 972 (1957); W. A. Bryce and Sir Cyril Hinschelwood, *J. Chem. Soc.*,